
This cheat sheet outlines the key steps to build a hands-free, continuous mobile application
testing project within your CI pipeline. The aim is to help you validate and perform quality
checks on hardened applications.

This cheat sheet utilizes Appium Desktop, Eclipse, Git, Jenkins, Jira, and Digital.ai Testing.

What You Need to Start Mobile App Testing:

The Tester's Path to Automation 1

Your Continuous Testing Cheat Sheet
for Mobile App Quality
Shift Gears • Shift Left

Digital.ai •

Application Under Test
A mobile application, ideally hardened using Digital.ai Application Security

1.

Test Infrastructure
Access to mobile devices (either local or remote)

Clearly defined device and OS coverage requirements

A test orchestration or grid execution platform (e.g., Digital.ai Testing)

2.

Test Development Tools
Appropriate mobile test development tools, such as Appium Studio, Appium, XCTest, or Espresso

A suite of test cases that cover functional, performance, accessibility, and basic security validation

3.

DevOps & CI/CD Toolchain
 A code repository (e.g., Git) to manage and version control test scripts

4.

Build Automation Tools
A build automation tool (e.g., Maven or Gradle) to compile and package apps

A CI tool (e.g., Jenkins) to run tests automatically as part of your development pipeline

5.

Execute tests locally within the environment to ensure they function as
expected and reflect desired behavior.

Export the generated test code and assets for your Integrated Development
Environment (IDE) to further develop them.

S
T

E
P

 1

3.

4.

2. Set Up Your Automation Project (e.g., Eclipse/IntelliJ)

Initiate a new Java class or project within your IDE as your test automation
entry point.

Initialize a Git repository for version control and clone it in your local workspace.

Create a Java Gradle project and add essential automation framework
dependencies to your build file.

Build a foundational test framework structure that includes page object models,
utility classes, and reporting.

Configure your test project to with a remote test execution grid using URL and
access credentials for scalable execution.

Integrate your exported test cases into the project, defining target platforms and
devices needed for execution.

Customize test execution settings including defining which suites to run,
parallelization and test data management.

Add a unique build ID or versioning key to your tests that runs traceability
and reporting.

Validate project setup by executing tests locally within your IDE and test
functionality before CI integration.

S
T

E
P

 2

1.

4.

5.

6.

7.

8.

9.

2.

3.

The Tester's Path to Automation 2Digital.ai •

1. Develop Tests in Your Environment

Steps:

Connect your test development environment to a physical mobile device
or emulator.

Record user flows manually or edit your existing test cases to cover
specific functionalities.

1.

2.

3. Integrate with Your CI Tool (e.g., Jenkins)

Establish the connection between your Git repository and CI tool to enable
automated code polling and build triggering.

Configure parameterized builds for flexible execution, like running specific
suites or targeting different environments.

Execute the CI job manually from Jenkins to execute tests and review initial reports.

Create a new CI job that will orchestrate the build, test execution, and reporting.

Define necessary environment variables for the build within your CI configuration.

1.

4.

5.

2.

3.

S
T

E
P

 3

4. Automate Continuous Testing Execution

Configure automated job execution triggers (e.g., new code commits,
scheduled cron jobs, webhooks) within your CI pipeline.

Rigorously verify that triggers function and that test reports are
automatically generated, presented, and analyzed, including security
posture and hardening effectiveness.

S
T

E
P

 4

1.

2.

5. Monitor KPIs for Continuous Improvement

Create a process for continuous monitoring and analysis of KPIs. Continuously
track metrics like feedback time, quality trends, and Security KPIs to drive
ongoing optimization and continuous improvement.

S
T

E
P

 5

1.

The Tester's Path to Automation 3Digital.ai •

Helping you harmonize software delivery

Digital.ai AI-powered
DevSecOps platform

The Digital.ai Difference
 One platform that automates release pipelines and integrates complex toolchains.
Unify app delivery, integrate existing tools & scale across any environment.

Automated mobile app testing and security designed to scale.
Provide secure, high-quality apps through better automated testing & app protection techniques.

Built-in AI, intelligence, compliance, and governance across all software delivery workflows.
Centralize data, optimize processes, and gain augmented insights for faster, safer
software delivery.

©2025 Digital.ai is a trademark of Digital.ai Software, Inc.

About Digital.ai
Digital.ai is the only AI-powered software delivery platform purpose-built for the enterprise, enabling the world’s
largest organizations to build, test, secure, and deliver high-quality software. By unifying AI-driven insights,
automation, and security across the software development lifecycle, Digital.ai empowers enterprises to deliver
innovation with confidence. Trusted by global 5,000 enterprises, Digital.ai is redefining how enterprises build better
software in an AI-driven world.

Additional information about Digital.ai can be found at digital.ai/ and on Twitter, LinkedIn and YouTube.

Learn more at Digital.ai

https://digital.ai/
https://twitter.com/digitaldotai
https://www.linkedin.com/company/digitaldotai/
https://www.youtube.com/@digital-ai7016
https://digital.ai/

